
April 2021

Rootless Containers
With Podman

Or why I have trust issues

(CC BY-NC-SA 4.0)

Steven Ellis - Red Hat

April 2021

Agenda

What - An overview of the technology

- Containers & Podman

Why rootless

- Should be why wouldn’t you run containers rootless

How - Implementing a simple example

- Home Assistant + Mosquitto MQTT

April 2021

Container Standards : Runtime interfaces

April 2021

Experience:
● A lightweight, OCI-compliant container runtime designed for Kubernetes

● Runs any OCI compliant, Docker compatible container images

● Improve container security & performance at scale

Roadmap
● Permanent Kubernetes project

● Continues to track and release with upstream Kubernetes

● On track to become the default container engine for nodes

● Converting node troubleshooting documentation to use crictl for human interface to CRI-O

● Adding user namespace support

● Integrating libpod for better CLI integration with Podman

April 2021

Container Standards : Alternative Tooling

skopeo

April 2021

Experience

● Provides a familiar command line experience compatible with the docker cli

● Great for running, building, and sharing containers outside of OpenShift

● Can be wired into existing infrastructure where the docker daemon/cli are used today

● Simple command line interface, no client-server architecture, so more agile in many use cases

Roadmap:

● GA in RHEL 7.6 & RHEL 8

○ https://podman.io/getting-started/installation for a wide range of distribution focused guides.

● Run containers as non-root (enhanced user namespaces)

● Docker compatible health checks

https://podman.io/getting-started/installation

April 2021

Experience

● OCI Container images compatible with Docker format

● Multi-stage builds supported with and without dockerfiles

● Customizable image layer caching

● Shares the underlying image and storage components with CRI-O

● Build OCI compatible images as a non-root user

April 2021

(don’t) get rooted

April 2021

Why rootless containers?

We’d mostly solved this on traditional Linux environments
- Apps and services run under “service” userids

Originally all “docker” images had to be run as “root”
docker run -it alpine

Rootless containers are containers that can be created, run, and managed by
users without admin rights.

Multiple unprivileged users can run the same containers on the same machine

April 2021

Why Podman?

Fundamentally designed with security in mind

Rootless support built in

Integrates nicely with systemd

Default approach on Fedora and RHEL

April 2021

Why Should I Care?

I build my containers from Scratch?

- Really!!.. All of Them?

- Including the Base OS?

- No community containers?

- No 3rd party commercial containers

My container platform is secure

- Really? Good for you!!

We all consume a base OS of some form

- Alpine

- Ubuntu

- UBI8

Growing number of commercial containers

- Microsoft SQL Server has a UBI based

container image

April 2021
How secure are

Docker / k8s

A new security analysis of the 4 million container

images hosted on the Docker Hub repository

revealed that more than half contained at least

one critical vulnerability.
- https://www.csoonline.com/article/3599454/h

alf-of-all-docker-hub-images-have-at-least-

one-critical-vulnerability.html

- https://www.securityweek.com/analysis-4-mil

lion-docker-images-shows-half-have-critical

-vulnerabilities

90% of respondents have experienced a security

incident in Kubernetes environments
- https://www.stackrox.com/post/2020/09/top-5

-takeaways-from-the-latest-kubernetes-secur

ity-report/

Top 5 Kubernetes Vulnerabilities of 2019 - the

Year in Review
- https://www.stackrox.com/post/2020/01/top-5

-kubernetes-vulnerabilities-of-2019-the-yea

r-in-review/

https://www.csoonline.com/article/3599454/half-of-all-docker-hub-images-have-at-least-one-critical-vulnerability.html
https://www.csoonline.com/article/3599454/half-of-all-docker-hub-images-have-at-least-one-critical-vulnerability.html
https://www.csoonline.com/article/3599454/half-of-all-docker-hub-images-have-at-least-one-critical-vulnerability.html
https://www.securityweek.com/analysis-4-million-docker-images-shows-half-have-critical-vulnerabilities
https://www.securityweek.com/analysis-4-million-docker-images-shows-half-have-critical-vulnerabilities
https://www.securityweek.com/analysis-4-million-docker-images-shows-half-have-critical-vulnerabilities
https://www.stackrox.com/post/2020/09/top-5-takeaways-from-the-latest-kubernetes-security-report/
https://www.stackrox.com/post/2020/09/top-5-takeaways-from-the-latest-kubernetes-security-report/
https://www.stackrox.com/post/2020/09/top-5-takeaways-from-the-latest-kubernetes-security-report/
https://www.stackrox.com/post/2020/01/top-5-kubernetes-vulnerabilities-of-2019-the-year-in-review/
https://www.stackrox.com/post/2020/01/top-5-kubernetes-vulnerabilities-of-2019-the-year-in-review/
https://www.stackrox.com/post/2020/01/top-5-kubernetes-vulnerabilities-of-2019-the-year-in-review/

April 2021

Going rootless!

April 2021

Be the customer

Validate the technology

- In a way that excites me

Don’t cut corners

- Kinda… Almost

What do I need that could/should be in a container?

- Using a 3rd party container.

April 2021

re-platform vs net new

Existing Services

- Bunch of websites

- Trac / SVN / Git

- MythTV

- NFS / SMB

- Firewall

- Music Streaming

New and Shiny

- Home Automation

- …..

April 2021

Rootless Options

Podman runs as a user “fred”

- Processes inside container run as root
$ id
uid=1003(fred) gid=1003(fred) groups=1003(fred)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0
:c0.c1023

$ podman pull registry.access.redhat.com/ubi8

$ podman run -it \
registry.access.redhat.com/ubi8 \
/bin/bash

id
uid=0(root) gid=0(root) groups=0(root)
whoami
root

Podman runs as a user “fred”

- Processes inside run as a specified user

[fred@pod1 ~]$ podman run -it \

-u nobody \

registry.access.redhat.com/ubi8 \

/bin/bash

bash-4.4$ id

uid=65534(nobody) gid=65534(nobody) groups=65534(nobody)

bash-4.4$ whoami

nobody

April 2021

Rootless Requirements

Podman 1.6.4 or newer

- Ideally Podman 2.x +

slirp4netns

Increase number of user namespaces
echo "user.max_user_namespaces=28633" > /etc/sysctl.d/userns.conf

sysctl -p /etc/sysctl.d/userns.conf

Additional subordinate SUBIUD/SUBGIUD entries

- Only required if using “system” users
- details provided below in my example

cat /etc/subuid /etc/subgid

April 2021

HomeAssistant

Many thanks - yet again - to Chris Smart

- https://blog.christophersmart.com/2019/09/20/running-a-non-ro

ot-container-on-fedora-with-podman-and-systemd/

Create the user environment
useradd -r -m -d /var/lib/hass hass

with additional SUBUIDs (if needed)
NEW_SUBUID=$(($(tail -1 /etc/subuid \

 |awk -F ":" '{print $2}')+65536))

NEW_SUBGID=$(($(tail -1 /etc/subgid \

 |awk -F ":" '{print $2}')+65536))

sudo usermod \

--add-subuids ${NEW_SUBUID}-$((${NEW_SUBUID}+65535)) \

--add-subgids ${NEW_SUBGID}-$((${NEW_SUBGID}+65535)) \

hass

Create the config/data directories with the correct

SELinux permissions
sudo -H -u hass bash -c "mkdir ~/{config,ssl}"

sudo semanage fcontext -a -t user_home_dir_t \

 "/var/lib/hass(/.+)?"

sudo semanage fcontext -a -t svirt_sandbox_file_t \

 "/var/lib/hass/((config)|(ssl))(/.+)?"

sudo restorecon -Frv /var/lib/hass

Expose the service
firewall-cmd --add-port=8123/tcp --permanent

https://blog.christophersmart.com/2019/09/20/running-a-non-root-container-on-fedora-with-podman-and-systemd/
https://blog.christophersmart.com/2019/09/20/running-a-non-root-container-on-fedora-with-podman-and-systemd/

April 2021

Hass container

Initial testing
podman run -dt \
--name=hass \
-v /var/lib/hass/config:/config \
-v /var/lib/hass/ssl:/ssl \
-v /etc/localtime:/etc/localtime:ro \
--net=host \
docker.io/homeassistant/home-assistant:latest

podman ps -a

Check the service is running
podman logs hass

Enable as systemd service
cat << EOF | sudo tee /etc/systemd/system/hass.service
[Unit]
Description=Home Assistant in Container
After=network.target

[Service]
User=hass
Group=hass
Type=simple
TimeoutStartSec=5m
ExecStartPre=-/usr/bin/podman rm -f "hass"
ExecStart=podman run --name=hass -v
/var/lib/hass/ssl:/ssl:ro -v /var/lib/hass/config:/config
-v /etc/localtime:/etc/localtime:ro --net=host
docker.io/homeassistant/home-assistant:latest
ExecReload=-/usr/bin/podman stop "hass"
ExecReload=-/usr/bin/podman rm "hass"
ExecStop=-/usr/bin/podman stop "hass"
Restart=always
RestartSec=30

[Install]
WantedBy=multi-user.target
EOF

April 2021

MQTT

Need a mqtt broker to handle some of my devices

- mosquitto mqtt is a perfect fit

Test run as hass user
podman run --name mosquitto \

 --rm -p "9001:9001" -p "1883:1883" \

 eclipse-mosquitto:latest

Enable as systemd service
cat << EOF | sudo tee /etc/systemd/system/mosquitto.service
[Unit]
Description=Home Assistant in Container
After=network.target

[Service]
User=hass
Group=hass
Type=simple
TimeoutStartSec=5m
ExecStartPre=-/usr/bin/podman rm -f "mosquitto"
ExecStart=podman run --name mosquitto \
 --rm -p "9001:9001" -p "1883:1883" \
 eclipse-mosquitto:latest
ExecReload=-/usr/bin/podman stop "mosquitto"
ExecReload=-/usr/bin/podman rm "mosquitto"
ExecStop=-/usr/bin/podman stop "mosquitto"
Restart=always
RestartSec=30

[Install]
WantedBy=multi-user.target
EOF

April 2021

Good/Bad/Frustrating

Frustrating

- Initial rootless support in RHEL8.1 podman

wasn’t fully functional

- Weird memory errors running hass

- Tested an early engineering build of

podman to validate and resolve

- No issues as of GA RHEL 8.2

- Would have been painless on Fedora

Bad
- Not all containers are ready to be rootless

- It isn’t easy to identify
- Your mileage may vary
- Many need to run as root inside the container

- Crash consistency issues
- Appears to be a lot better with more recent

podman builds
- Previously had to manually clean up dead pods.

Good
- Very easy to update the service
- Configuration and Data are very easy to

back/migrate
- I “feel” safer.

April 2021

Troubleshooting

Very similar to docker troubleshooting

Check for old/dead images
podman ps -a

podman logs <image_name>

Stop and cleanup old/dead images
podman stop <image_name>

podman rmi <image_name>

If you’re using systemd - avoid starting images

manually if possible
systemctl stop hass
systemctl stop mosquitto

systemctl start hass
systemctl start mosquitto

April 2021

Upgrading

Pull the new image in advance as the required user
su - hass
$ podman pull eclipse-mosquitto:latest

Restart the service using systemd

systemctl stop mosquitto

systemctl start mosquitto

April 2021

References

12 Podman guides to get started with containers

Rootless containers with Podman: The basics

What happens behind the scenes of a rootless Podman container?

Rootless containers using Podman - Video Series

Experimenting with Podman

https://www.redhat.com/sysadmin/podman-guides-2020
https://developers.redhat.com/blog/2020/09/25/rootless-containers-with-podman-the-basics/
https://www.redhat.com/sysadmin/behind-scenes-podman
https://www.redhat.com/sysadmin/rootless-containers-podman
https://levelup.gitconnected.com/experimenting-with-podman-e6cb24428bfd

April 2021

Questions?

sellis@redhat.com
http://people.redhat.com/sellis

