
April 2021

Rootless Containers
With Podman

Or why I have trust issues

(CC BY-NC-SA 4.0)

Steven Ellis - Red Hat



April 2021

Agenda

What - An overview of the technology

- Containers & Podman

Why rootless

- Should be why wouldn’t you run containers rootless

How - Implementing a simple example

- Home Assistant + Mosquitto MQTT
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Container Standards : Runtime interfaces
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Experience:
● A lightweight, OCI-compliant container runtime designed for Kubernetes

● Runs any OCI compliant, Docker compatible container images

● Improve container security & performance at scale

Roadmap
● Permanent Kubernetes project

● Continues to track and release with upstream Kubernetes

● On track to become the default container engine for nodes

● Converting node troubleshooting documentation to use crictl for human interface to CRI-O

● Adding user namespace support

● Integrating libpod for better CLI integration with Podman



April 2021

Container Standards : Alternative Tooling

skopeo
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Experience

● Provides a familiar command line experience compatible with the docker cli

● Great for running, building, and sharing containers outside of OpenShift

● Can be wired into existing infrastructure where the docker daemon/cli are used today

● Simple command line interface, no client-server architecture, so more agile in many use cases

Roadmap:

● GA in RHEL 7.6 & RHEL 8

○ https://podman.io/getting-started/installation for a wide range of distribution focused guides.

● Run containers as non-root (enhanced user namespaces)

● Docker compatible health checks

https://podman.io/getting-started/installation
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Experience

● OCI Container images compatible with Docker format

● Multi-stage builds supported with and without dockerfiles

● Customizable image layer caching 

● Shares the underlying image and storage components with CRI-O

● Build OCI compatible images as a non-root user
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(don’t) get rooted
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Why rootless containers?

We’d mostly solved this on traditional Linux environments
- Apps and services run under “service” userids

Originally all “docker” images had to be run as “root”
# docker run -it alpine

Rootless containers are containers that can be created, run, and managed by 
users without admin rights.

Multiple unprivileged users can run the same containers on the same machine
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Why Podman?

Fundamentally designed with security in mind

Rootless support built in

Integrates nicely with systemd

Default approach on Fedora and RHEL
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Why Should I Care?

I build my containers from Scratch?

- Really!!.. All of Them?

- Including the Base OS?

- No community containers?

- No 3rd party commercial containers

My container platform is secure

- Really? Good for you!!

We all consume a base OS of some form

- Alpine

- Ubuntu

- UBI8

Growing number of commercial containers

- Microsoft SQL Server has a UBI based 

container image
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How secure are

Docker / k8s

A new security analysis of the 4 million container 

images hosted on the Docker Hub repository 

revealed that more than half contained at least 

one critical vulnerability.
- https://www.csoonline.com/article/3599454/h

alf-of-all-docker-hub-images-have-at-least-

one-critical-vulnerability.html

- https://www.securityweek.com/analysis-4-mil

lion-docker-images-shows-half-have-critical

-vulnerabilities

90% of respondents have experienced a security 

incident in Kubernetes environments
- https://www.stackrox.com/post/2020/09/top-5

-takeaways-from-the-latest-kubernetes-secur

ity-report/

Top 5 Kubernetes Vulnerabilities of 2019 - the 

Year in Review
- https://www.stackrox.com/post/2020/01/top-5

-kubernetes-vulnerabilities-of-2019-the-yea

r-in-review/

https://www.csoonline.com/article/3599454/half-of-all-docker-hub-images-have-at-least-one-critical-vulnerability.html
https://www.csoonline.com/article/3599454/half-of-all-docker-hub-images-have-at-least-one-critical-vulnerability.html
https://www.csoonline.com/article/3599454/half-of-all-docker-hub-images-have-at-least-one-critical-vulnerability.html
https://www.securityweek.com/analysis-4-million-docker-images-shows-half-have-critical-vulnerabilities
https://www.securityweek.com/analysis-4-million-docker-images-shows-half-have-critical-vulnerabilities
https://www.securityweek.com/analysis-4-million-docker-images-shows-half-have-critical-vulnerabilities
https://www.stackrox.com/post/2020/09/top-5-takeaways-from-the-latest-kubernetes-security-report/
https://www.stackrox.com/post/2020/09/top-5-takeaways-from-the-latest-kubernetes-security-report/
https://www.stackrox.com/post/2020/09/top-5-takeaways-from-the-latest-kubernetes-security-report/
https://www.stackrox.com/post/2020/01/top-5-kubernetes-vulnerabilities-of-2019-the-year-in-review/
https://www.stackrox.com/post/2020/01/top-5-kubernetes-vulnerabilities-of-2019-the-year-in-review/
https://www.stackrox.com/post/2020/01/top-5-kubernetes-vulnerabilities-of-2019-the-year-in-review/
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Going rootless!
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Be the customer

Validate the technology

- In a way that excites me

Don’t cut corners

- Kinda… Almost

What do I need that could/should be in a container?

- Using a 3rd party container.
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re-platform vs net new

Existing Services

- Bunch of websites

- Trac / SVN / Git

- MythTV

- NFS / SMB

- Firewall

- Music Streaming

New and Shiny

- Home Automation

- …..
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Rootless Options

Podman runs as a user “fred”

- Processes inside container run as root
$ id
uid=1003(fred) gid=1003(fred) groups=1003(fred) 
context=unconfined_u:unconfined_r:unconfined_t:s0-s0
:c0.c1023

$ podman pull registry.access.redhat.com/ubi8

$ podman run -it \
registry.access.redhat.com/ubi8 \
/bin/bash

# id
uid=0(root) gid=0(root) groups=0(root)
# whoami
root

Podman runs as a user “fred”

- Processes inside run as a specified user

[fred@pod1 ~]$ podman run -it \

-u nobody \

registry.access.redhat.com/ubi8 \

/bin/bash

bash-4.4$ id

uid=65534(nobody) gid=65534(nobody) groups=65534(nobody)

bash-4.4$ whoami

nobody
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Rootless Requirements

Podman 1.6.4 or newer

- Ideally Podman 2.x +

slirp4netns 

Increase number of user namespaces
# echo "user.max_user_namespaces=28633" > /etc/sysctl.d/userns.conf

# sysctl -p /etc/sysctl.d/userns.conf

Additional subordinate SUBIUD/SUBGIUD entries

- Only required if using “system” users
- details provided below in my example

cat /etc/subuid /etc/subgid
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HomeAssistant

Many thanks - yet again - to Chris Smart

-  https://blog.christophersmart.com/2019/09/20/running-a-non-ro

ot-container-on-fedora-with-podman-and-systemd/

Create the user environment
useradd -r -m -d /var/lib/hass hass

with additional SUBUIDs (if needed)
NEW_SUBUID=$(($(tail -1 /etc/subuid \

  |awk -F ":" '{print $2}')+65536))

NEW_SUBGID=$(($(tail -1 /etc/subgid \

  |awk -F ":" '{print $2}')+65536))

sudo usermod \

--add-subuids  ${NEW_SUBUID}-$((${NEW_SUBUID}+65535)) \

--add-subgids  ${NEW_SUBGID}-$((${NEW_SUBGID}+65535)) \

hass

Create the config/data directories with the correct 

SELinux permissions
sudo -H -u hass bash -c "mkdir ~/{config,ssl}"

sudo semanage fcontext -a -t user_home_dir_t \

  "/var/lib/hass(/.+)?"

sudo semanage fcontext -a -t svirt_sandbox_file_t \

  "/var/lib/hass/((config)|(ssl))(/.+)?"

sudo restorecon -Frv /var/lib/hass

Expose the service
firewall-cmd  --add-port=8123/tcp --permanent

https://blog.christophersmart.com/2019/09/20/running-a-non-root-container-on-fedora-with-podman-and-systemd/
https://blog.christophersmart.com/2019/09/20/running-a-non-root-container-on-fedora-with-podman-and-systemd/
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Hass container

Initial testing
podman run -dt \
--name=hass \
-v /var/lib/hass/config:/config \
-v /var/lib/hass/ssl:/ssl \
-v /etc/localtime:/etc/localtime:ro \
--net=host \
docker.io/homeassistant/home-assistant:latest

podman ps -a

Check the service is running
podman logs hass

Enable as systemd service
cat << EOF | sudo tee /etc/systemd/system/hass.service
[Unit]
Description=Home Assistant in Container
After=network.target
 
[Service]
User=hass
Group=hass
Type=simple
TimeoutStartSec=5m
ExecStartPre=-/usr/bin/podman rm -f "hass"
ExecStart=podman run --name=hass -v 
/var/lib/hass/ssl:/ssl:ro -v /var/lib/hass/config:/config 
-v /etc/localtime:/etc/localtime:ro --net=host 
docker.io/homeassistant/home-assistant:latest
ExecReload=-/usr/bin/podman stop "hass"
ExecReload=-/usr/bin/podman rm "hass"
ExecStop=-/usr/bin/podman stop "hass"
Restart=always
RestartSec=30
 
[Install]
WantedBy=multi-user.target
EOF
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MQTT

Need a mqtt broker to handle some of my devices

- mosquitto mqtt is a perfect fit

Test run as hass user
podman run --name mosquitto \

  --rm -p "9001:9001" -p "1883:1883" \

  eclipse-mosquitto:latest

Enable as systemd service
cat << EOF | sudo tee /etc/systemd/system/mosquitto.service
[Unit]
Description=Home Assistant in Container
After=network.target
 
[Service]
User=hass
Group=hass
Type=simple
TimeoutStartSec=5m
ExecStartPre=-/usr/bin/podman rm -f "mosquitto"
ExecStart=podman run --name mosquitto \
  --rm -p "9001:9001" -p "1883:1883" \
  eclipse-mosquitto:latest
ExecReload=-/usr/bin/podman stop "mosquitto"
ExecReload=-/usr/bin/podman rm "mosquitto"
ExecStop=-/usr/bin/podman stop "mosquitto"
Restart=always
RestartSec=30
 
[Install]
WantedBy=multi-user.target
EOF
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Good/Bad/Frustrating

Frustrating

- Initial rootless support in RHEL8.1 podman 

wasn’t fully functional

- Weird memory errors running hass

- Tested an early engineering build of 

podman to validate and resolve

- No issues as of GA RHEL 8.2

- Would have been painless on Fedora

Bad
- Not all containers are ready to be rootless

- It isn’t easy to identify
- Your mileage may vary
- Many need to run as root inside the container

- Crash consistency issues
- Appears to be a lot better with more recent 

podman builds
- Previously had to manually clean up dead pods.

Good
- Very easy to update the service
- Configuration and Data are very easy to 

back/migrate
- I “feel” safer.
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Troubleshooting

Very similar to docker troubleshooting

Check for old/dead images
podman ps -a

podman logs <image_name>

Stop and cleanup old/dead images
podman stop <image_name>

podman rmi <image_name>

If you’re using systemd - avoid starting images 

manually if possible
systemctl stop hass
systemctl stop mosquitto

systemctl start hass
systemctl start mosquitto
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Upgrading

Pull the new image in advance as the required user
# su - hass
$ podman pull   eclipse-mosquitto:latest

Restart the service using systemd

# systemctl stop mosquitto

# systemctl start mosquitto
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References

12 Podman guides to get started with containers

Rootless containers with Podman: The basics

What happens behind the scenes of a rootless Podman container?

Rootless containers using Podman - Video Series

Experimenting with Podman

https://www.redhat.com/sysadmin/podman-guides-2020
https://developers.redhat.com/blog/2020/09/25/rootless-containers-with-podman-the-basics/
https://www.redhat.com/sysadmin/behind-scenes-podman
https://www.redhat.com/sysadmin/rootless-containers-podman
https://levelup.gitconnected.com/experimenting-with-podman-e6cb24428bfd
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Questions?

sellis@redhat.com
http://people.redhat.com/sellis


